Madge MARTIN

MSME, Université Paris-Est-Créteil, 61 av du Général de Gaulle – Créteil 94010 - FRANCE +33 (0) 6 87 22 82 79 <u>madge.martin.4@gmail.com</u> <u>https://madgemartin.wordpress.com</u>

(Bio-) mechanics PhD

Main research interests: computational modeling of multiphysical and biological systems; tissue remodeling, growth and regeneration; multiscale approaches, micromechanics. Best PhD Thesis 2020 of the Société de Biomécanique (French-speaking Biomechanics Society) 3rd ex-aequo best PhD Thesis 2020 of the Val-de-Marne (French department) Laureate of the 2019 "For Women in Science" L'Oréal-UNESCO "Rising Talents" fellowship Passionate with early music and dance.

Professional experience

01/2022-now	Laboratoire MSME (Multiscale Modelling and Simulation), Paris area (France) Centre National de la Recherche Scientifique CNRS Researcher
01/2021-12/2021	LBMC - <i>ENS Lyon / INRIA – Equipe Dracula</i> , Lyon (France) Post-doctoral fellowship Development of a dynamic multiscale model of the T CD8 cell immune response.
01/2020-12/2020	 STBio / SAINBIOSE - Mines Saint-Etienne, Saint-Etienne (France) Post-doctoral fellowship Development of an arterial mechanobiological model accounting for vascular cells phenotype transition, collagen synthesis and calcification.
10/2016-12/2019	 BSRG - Queensland University of Technology, Brisbane (Australia) Laboratoire MSME (Multiscale Modelling and Simulation), Paris area (France) Joint PhD thesis: Bone remodelling and mechanomics supervised by V. Sansalone, P. Pivonka, T. Lemaire and G. Haïat.
	Conception of a multi-scale theory of bone remodelling: energetic contributions of biochemical phenomena, actions of signalling pathways;
	In silico model of an anabolic drug treatment of osteoporosis with romosozumab;
	Development of a Matlab numerical algorithm driving a finite-element interface to simulate bone remodelling in 2D and 3D;
	Design of a clinical study: vertebral body tissue properties and remodeling in adolescent idiopathic scoliosis subjects.
03/2016-08/2016	<i>Laboratoire Navier (ENPC) - IFSTTAR</i> , Paris area (France) Master thesis: Reinforcing metallic structures with adhesive bonding
08/2015-02/2016	Stryker, Selzach (Switzerland) Intern Materials Engineering & Concept development

02/2015-07/2015	<i>EPFL - Laboratory of Biomechanics and Orthopedics,</i> Lausanne (Switzerland) Project: FE modelling of micro-motions at the bone-implant interface
02/2014-07/2014	UFMG (Federal University of Minas Gerais), Belo Horizonte (Brazil) Intern in the Biomaterials laboratory: design of a bio-composite foam
08/2013-02/2014	<i>Julius Wolff Institute - Charité</i> , Berlin (Germany) Intern in Mechanobiology: immunohistochemistry, mice dissection and handling, genotyping, FE modelling of bone aging and remodelling (C++/Abaqus routine)
04/2012-07/2012	<i>Universitat Politècnica de València</i> , Valencia (Spain) Intern in Coastal Engineering: wave behaviour in intermediate water

Teaching

Total « TD equivalent » academic teaching hours: 180 hours

	Ecole des Mines Saint-Etienne (France)
03/2020-12/2020	Sessional academic (Masters)
	Homogenization methods (replacing head of course) – 13.5 hours (CM 7.5, TP 6)
	Continuum mechanics – 3 hours (TD)
	Biomechanics – 7 hours (CM)
	Queensland University of Technology, Brisbane (Australia)
08/2018-12/2018	Sessional academic: teaching assistant (undergraduate level)
	Computer labs in biomechanics $(TP) - 20$ hours.
	Université Paris-Est Créteil, Paris area (France)
10/2016-12/2019	Sessional academic: teaching assistant (undergraduate level)
	Tutorials in fluid mechanics (TD) – 78 hours.
	Computer labs in solid mechanics $(TP) - 57$ hours.
	Computer labs in finite-element modelling $(TP) - 21$ hours.
	Introduction to computer tools $(TP) - 12$ hours.
	Complétude, and private, Paris area (France)
2013-2016	Math, Physics and Chemistry tutor (high school level)

Education

2014 - 2016	MSc Materials Science and Engineering EPFL, Lausanne (Switzerland)
2011 - 2017	Engineering diploma in Mechanical Engineering and Materials Science Ecole des Ponts ParisTech (ENPC), Paris area (France)
2009 - 2011	Scientific higher school preparatory classes (selective undergraduate studies) Lycée Charlemagne, Paris (France)
2009	Baccalauréat (end of French secondary education)

Computer skills

Finite elements analysis: Abaqus, Comsol

3D CAD design, image processing: Catia, ProE, Solidworks, ImageJ, Amira, Geomagic, Simpleware

Formal calculations: Maple, Mathematica

High performance computing: finite-element analysis (Abaqus solver), experience with molecular dynamics and density functional theory

Programming: Matlab, C, C++, Python, Visual Basic Applications, HTML/Javascript

Office automation software: Word, Excel, PowerPoint

Operating systems: Mac OS, Windows, Linux (Ubuntu)

Imaging: experience with immunohistochemistry, light microscopy and micro-CT.

Supervision

09/2020-now	Federica Galbiati (PhD student). Patient-specific prediction of aneurysm growth and rupture in the ascending thoracic aorta.
09/2019-03/2020	Alexis Arslan (internship). Biomechanical characterization of the vertebral body in adolescent idiopathic scoliosis subjects.
03/2019-08/2019	Laure Stickel (internship). Biomechanical characterization of the vertebral body in adolescent idiopathic scoliosis subjects. Jurgis Ruza (internship). Structural characterization of the vertebral body in adolescent idiopathic scoliosis subjects using Raman spectroscopy and quantitative back-scattering electron imaging.
04/2018-10/2018	 Yexuan Sun (Bachelor project). Cortical bone remodelling: modelling travelling BMUs to simulate the evolution of mineralization and porosity. Christopher Chan (Bachelor project). Influence of mechanical stimulus on tissue orientation: 2D models of trabecular and cortical remodelling. Haimeng Ma (Bachelor project): A finite-element model of traveling BMUs.

Social and outreach programs

	Télémaque – Fondation L'Oréal Women in Science, online
01/2020-now	Online weekly coaching
	Coaching and mentoring aimed at underpriviledged high school female students in scientific subjects.
	Teleconcerts.fr, Paris area (France)
03/2020-07/2020	Online live classical music concerts during Covid-19 crisis
	Over 30 musicians (including amateurs and professionals, from Europe, Asia and
	Australia) recruited for weekly free live broadcasted concerts over the 2.5 month period
	on dedicated website www.teleconcerts.fr;
	Average 150 people audience for each concert;

	Live streaming, moderation, organization, community management.
04/2019-02/2020	Maison de l'adolescent, Paris area (France) Mentoring and alphabetization of teenage migrants
	DévelopPonts, Paris area (France)
10/2011-04/2012	Active member of a social organization (communication, outreach, humanitarian
	trip)
	Humanitarian trip in Togo (3 weeks): technical solutions (solar oven, water pump) and
	knowledge transfer.
	Organization of biweekly sessions opening to science for underpriviledged high school
	students (7 months).

Languages

French	Native speaker
English	Proficient, IELTS: C2 level 8.5/9 (2016)
Portuguese	Fluent (tandem, lived in Brazil for 5 months)
Spanish	Fluent, DELE C1 certification (2013)
German	Basic (tandem, total of 12 months in German speaking areas)

Miscellaneous

Dancer (social, competition): west coast swing, latin;

Recorder and violin player and early music enthusiast, former member of Queensland Baroque orchestra, member of Ensemble Cols Verts and Parvana ensembles;

Singer (Kammerchor des Collegium Musicum Berlin (Germany), Coral da UFMG (Belo Horizonte, Brazil), Jubilate in Biel (Switzerland)).

Awards and sponsorships

Third (ex-aequo) best PhD thesis of the Val-de-Marne department, 2020 Doctoral thesis award of the Société de Biomécanique, 2020 "For Women in Science" L'Oréal-UNESCO "Rising Talents" fellowship, 2019 QUT SEF-HDR Student Society "Best Presentation Award", 2018 QUT School of Chemistry, Physics and Mechanical Engineering (CPME) Scholarship, 2018 UPEC Joint PhD Scheme Top-up Scholarship, 2017 CAPES-COFECUB Scholarship (France-Brazil student exchange program), 2014

List of publications

Articles in peer-reviewed journals

- Martin, M., Avril, S., Morin, C. Modelling arterial growth in the context of arterial media calcification. *Journal of the Mechanics and Physics of Solids, in prep.*
- Martin, M., Avril, S., Morin, C. Mechanoregulation in the development of arterial calcifications. *IEEE Reviews in Biomedical Engineering, submitted.*
- Sansalone, V., Martin, M., Haïat, G., Pivonka, P., & Lemaire, T. (2021). A new model of bone remodeling and turnover set up in the framework of generalized continuum mechanics. *Mathematics and Mechanics of Solids*, <u>https://doi.org/10.1177/1081286520984690.</u>
- Martin, M., Avril, S., Morin, C. (2020). A micromechanical framework of arterial tissue growth in the context of medial calcification. *Computer Methods in Biomechanics and Biomedical Engineering*, 23(sup1): S194-S196. <u>https://doi.org/10.1080/10255842.2020.1813423</u>.
- Martin, M., Lemaire, T., Haïat, G., Pivonka, P., & Sansalone, V. (2020). Bone orthotropic remodeling as a thermodynamically-driven evolution. *Journal of Mechanics in Medicine and Biology*, 20(04):1950084. <u>https://doi.org/10.1142/S0219519419500842</u>.
- Martin, M., Sansalone, V., Cooper, D. M. L., Forwood, M., Pivonka, P. (2020). Assessment of romosozumab efficacy in the treatment of postmenopausal osteoporosis: results from a mechanistic PK-PD mechanostat model of bone remodeling. *Bone*, 133:115223. <u>https://doi.org/10.1016/j.bone.2020.115223</u>
- Martin, M., Pivonka, P., Haïat, G., Sansalone, V., Lemaire, T. (2019). An enriched continuum mechanics description of bone tissue to describe mineralization and mechanobiology in bone remodeling. *Computer Methods in Biomechanics and Biomedical Engineering*, 22(sup1):S74-S75. <u>https://doi.org/10.1080/10255842.2020.1713484</u>
- Martin, M., Sansalone, V., Cooper, D. M. L., Forwood, M., Pivonka, P. (2019). Mechanobiological osteocyte feedback drives mechanostat regulation of bone in a multiscale computational model. *Biomechanics and Modeling in Mechanobiology*, 18(5):1475-1496. <u>https://doi.org/10.1007/s10237-019-01158-w</u>
- Kruck, B., Zimmermann, E. A., Damerow, S., Figge, C., Julien, C., Wulstein, D., Thiele, T., Martin, M., Hamdy, R., Reumann, Marie K, Georg, D., Checa, S., Willie, B. (2018). Sclerostin-neutralizing antibody treatment enhances bone formation but does not rescue mechanically-induced delayed healing. *Journal of Bone and Mineral Research*, 33(9):1686-1697. <u>https://doi.org/10.1002/jbmr.3454</u>
- Martin, M., Lemaire, T., Haïat, G., Pivonka, P., Sansalone, V. (2017). A thermodynamically consistent model of bone rotary remodeling: a 2D study. *Computer Methods in Biomechanics and Biomedical Engineering*, 20(sup1):127–128. <u>https://doi.org/10.1080/10255842.2017.1382894</u>

Book chapters

Martin, M., Pivonka P., Haïat, G., Sansalone, V., Lemaire, T. (2020). Algorithmic formulation of bone fabric evolution based on the dissipation principle: a 2D finite-element study. In Bilen Emek Abali and Ivan Giorgio (Eds.), *Advanced Structured Materials*, pp. 49-69.

Martin, M., Sansalone, V., Pivonka P. (2020) Development of a computational modeling platform for patient-specific treatment of osteoporosis. In Miller K., Wittek A., Joldes G., Nash M., Nielsen P. (eds) *Computational Biomechanics for Medicine*. MICCAI 2019, MICCAI 2018. Springer, Cham. https://doi.org/10.1007/978-3-030-42428-2 6

Conference proceedings

- Martin, M.*, Avril, S., Morin, C. A micromechanical framework of arterial tissue growth in the context of medial calcification. In 45th Congress of the Société de Biomécanique (SB2020). Metz, France.
- Stickel, L., Martin, M., Miller, C., Little, J. P., Izatt, M., Labrom, R. D., Askin, G. N., Pivonka, P*. (2020). Insights into trabecular bone adaptation in adolescent idiopathic scoliosis using microCT analysis. In Spineweek 2020. Melbourne, Australia.
- Arslan, A., Martin, M., Miller, C., Little, J. P., Izatt, M., Labrom, R. D., Askin, G. N., Pivonka, P*. (2019). Assessment of trabecular bone adaptation in adolescent idiopathic scoliosis due to altered joint loading. In 16th Adelaide Spinal Research Symposium. Adelaide, Australia.
- Martin, M., Pivonka, P., Haïat, G., Sansalone, V.*, Lemaire, T. (2019). An enriched continuum mechanics description of bone tissue to describe mineralization and mechanobiology in bone remodeling. In 44th Congress of the Société de Biomécanique (SB2019). Poitiers, France.
- Martin, M., Pivonka, P., Haïat, G., Sansalone, V., Lemaire, T.* (2019). Un modèle multi-échelles de remodelage osseux reliant les influences biochimiques et mécaniques. In *Congrès Français de Mécanique*. Brest, France.
- Martin, M.*, Sansalone, V., Cooper, D. M. L., Forwood, M., Pivonka, P. (2019). A multi-scale model of remodeling bridging bone mechanics and biochemistry. In *European Society of Biomechanics Conference 2019*. Vienna, Austria.
- Martin, M., Pivonka P., Haïat, G., Lemaire, T., Sansalone, V.* (2019). A novel generalized continuum thermodynamics framework to describe bone remodeling and mineralization. In *International Conference on Nonlinear Solid Mechanics*. Roma, Italy.
- Martin, M.*, Sansalone, V., Cooper, D. M. L., Forwood, M., Pivonka, P. (2018). A model of bone mechanostat directed by osteocytes mechanosensation. In 11th Australasian Biomechanics Conference 2018. Auckland, New Zealand.
- Martin, M.*, Sansalone, V., Cooper, D. M. L., Forwood, M., Bonewald L., Pivonka, P. (2018). Effect of sclerostin monoclonal antibody therapy on BMD is linked to osteocyte sensitivity – insights from a mechanobiological model of bone remodeling. In ANZBMS 24th Annual Scientific Meeting. Queenstown, New Zealand.
- Pivonka, P.*, Martin, M., Scheiner, S., Sansalone, V., Cooper, D., Forwood, M., Bonewald, L. (2018). A multiscale computational model for mechanostat regulation in bone based on biochemical osteocyte feedback. In *Lacroix, Damien (Ed.) 8th World Congress of Biomechanics*. Dublin, Ireland.
- Sansalone, V.*, Martin, M., Lemaire, T., Haiat, G., Pivonka, P., Sansalone, V. (2018). Bone remodeling recast in the generalized continuum mechanics. In *Euromech 594 Bone remodeling: multiscale mechanical models and multiphysical aspects*. Nancy, France.

- Martin, M.*, Lemaire, T., Haiat, G., Pivonka, P., Sansalone, V. (2017). A thermodynamically consistent model of bone rotary remodeling: a 2D study. In 42nd Congress of the Société de Biomécanique (SB2017). Reims, France.
- Martin, M.*, Lemaire, T., Haiat, G., Pivonka, P., Sansalone, V. (2017). Thermodynamics rendering rotary bone remodeling: a 2D model. In *4th ECCOMAS Young Investigators Conference*. Milan, Italy.